Learning Action Selection Network of Intelligent Agent
نویسندگان
چکیده
Behavior-based artificial intelligent system is to derive the complicated behaviors by selecting appropriate one from a set of basic behaviors. Many robot systems have used behavior-based systems since the 1980’s. In this paper, we propose new method to create the sequences of behaviors appropriate to the changing environments by adding the function of learning with Learning Classifier System to P. Maes’ action selection network. Links of the network need to be reorganize as the problem changes, because each link is designed initially according to the given problem and is fixed. Learning Classifier System is suitable for learning of rule-based system in changing environments. The simulation results with Khepera robot simulator show the usefulness of learning in the action selection network by generating appropriate behaviors.
منابع مشابه
Intelligent multi-agent modeling of the interbank network and evaluation of the impact of regulatory policies
agent-based modeling is an emerging computational technique that makes it possible to simulate complex economic systems, including the banking network, with a bottom-up approach. In this paper, the country's banking network is simulated with an intelligent multi-agent modeling model and indicates that these agents behave based on the adaptive learning. This modeling has been done with the aim o...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملLearning Of Autonomous Agent In Virtual Environment
Presented topic is from area of development of artificial creatures and proposes new architecture of autonomous agent. The work builds on a research of the latest approaches to Artificial Life, realized by the Department of Cybernetics, CTU in Prague in the last twenty years. This architecture design combines knowledge from Artificial Intelligence (AI), Ethology, Artificial Life (ALife) and Int...
متن کاملCognitively Inspired Anticipation and Anticipatory Learning Mechanisms for Autonomous Agents
This paper describes the integration of several cognitively inspired anticipation and anticipatory learning mechanisms in an autonomous agent architecture, the Learning Intelligent Distribution Agent (LIDA) system. We provide computational mechanisms for variants of payoff, state, and sensorial anticipatory mechanisms. The payoff anticipatory mechanism in LIDA is implicitly realized by the acti...
متن کاملUser-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003